Мобильные телефоны и гаджеты

Мобильные телефоны и гаджеты

» » Что собой представляет первичная обмотка трансформатора? Определение характеристик силового трансформатора без маркировки Как определить обмотки трансформатора по сопротивлению

Что собой представляет первичная обмотка трансформатора? Определение характеристик силового трансформатора без маркировки Как определить обмотки трансформатора по сопротивлению

Первичная обмотка трансформатора – это часть устройства, к которой подводится преобразуемый переменный ток. Определить, где первичная, а где вторичная обмотка трансформатора, важно при использовании устройств без заводской маркировки и самодельных катушек.

На самодельных трансформаторах нет обозначений первичной обмотки.

Знания о внутреннем строении и принципе действия трансформаторов имеют практическое значение для начинающих радиолюбителей и домашних мастеров. Имея информацию о типах обмоток, методах их расчета и главных отличиях, можно с большей уверенностью начинать создание систем освещения и прочих устройств.

Типы трансформаторных обмоток

В зависимости от взаиморасположения проводящих ток элементов, направления их намотки и формы сечения провода выделяют несколько типов обмоток трансформаторов:

  1. Однослойная или двухслойная цилиндрическая обмотка из прямоугольного провода. Технология ее изготовления очень проста, благодаря чему такие катушки получили широкое распространение. Обмотка имеет небольшую толщину, что уменьшает нагрев устройства. Из недостатков следует выделить небольшую прочность конструкции.
  2. Многослойная цилиндрическая обмотка является аналогом предыдущего типа, но провод расположен в несколько слоев. Окна магнитной системы при этом заполняются лучше, но появляется проблема перегрева.
  3. Цилиндрическая многослойная обмотка из провода круглого сечения обладает свойствами, близкими к предыдущим разновидностям обмоток, но к недостаткам добавляется утрата прочности по мере роста мощности.
  4. Винтовая обмотка с одним, двумя и больше ходами имеет высокую прочность, отличную изоляцию и охлаждение. По сравнению с цилиндрическими обмотками, винтовая обходится дороже в производстве.
  5. Непрерывная обмотка из провода прямоугольного сечения не перегревается, она обладает значительным запасом прочности.
  6. Многослойная обмотка из фольги устойчива к повреждениям, хорошо заполняет окно магнитной системы, но технология производства таких катушек сложная и дорогостоящая.

У трансформаторов есть шесть основных типов обмотки.

На схемах трансформаторов начало обмоток высокого напряжения обозначается большими буквами латинского алфавита (A, B, C), а такая же часть проводов низкого напряжения – строчными буквами. Противоположный конец обмотки имеет общепринятое условное обозначение, состоящее из конечных трех букв латинского алфавита – X, Y, Z для входящего напряжения и x, y, z для выходящего.

Различают обмотки и по назначению:

  • основные – к ним относятся первичная и вторичная обмотки, по которым ток подается из сети и поступает к месту потребления;
  • регулирующие – являют собой отводы, главная функция которых – изменение коэффициента трансформации напряжения;
  • вспомогательные – используются для обеспечения нужд самого трансформатора.

Автоматизированный расчет намотки трансформатора

Правильно выбрать трансформатор важно не только при проведении ремонта электрической сети, систем освещения и цепей управления. Расчет важен и для радиолюбителей, которые хотят самостоятельно изготовить катушку для конструируемого прибора.

Для этого существуют удобные программы-калькуляторы, которые обладают широким функционалом и оперируют различными методами расчета.

Специальные программы облегчат расчет траснформатора.

  • напряжение, подающееся на первичную обмотку катушки, в большинстве случаев это для домашних нужд
  • напряжение составляет 220 вольт;
  • напряжение на вторичной обмотке;
  • сила тока вторичной обмотки.

Результат расчетов представлен в виде удобной таблицы, в которой указаны такие значения, как параметры сердечника и высота стержня, сечение провода, количество витков и мощность обмоток.

Автоматизированный расчет сильно упрощает теоретическую часть процесса конструирования трансформатора, позволяя сосредоточиться на важных деталях.

Отличия первичной обмотки от вторичной

Определить тип обмотки можно по ее сопротивлению.

Определение типа обмотки может быть важным в тех случаях, когда на трансформаторе не сохранилось никаких обозначений. Как узнать, где первичная, а где вторичная обмотка? Они рассчитаны на разное напряжение. Если к сети в 220 В подключить вторичную обмотку, то устройство просто сгорит.

Главный визуальный критерий, при помощи которого можно определить тип обмотки, – толщина провода, припаянного к его выводам . Трансформатор имеет 4 выхода: два для подключения к сети, а еще два для вывода напряжения. Провода, которыми первичная обмотка соединяется с сетью, имеют небольшую толщину. Вторичная обмотка подключена проводами довольно большого поперечного сечения.

Еще один верный признак, позволяющий узнать тип обмотки, – измерение сопротивления провода. Сопротивление первичной обмотки имеет довольно высокое значение тогда, когда у вторичной оно может составлять до 1 Ома.

Вне зависимости от модели, первичная обмотка трансформатора всегда будет одна. На принципиальных схемах она обозначается римской цифрой I. Вторичных обмоток может быть несколько, их обозначение – II, III, IV, и т.д. Не стоит допускать распространенной ошибки, называя такие обмотки третичными, четвертичными и так далее. Все они имеют один ранг и называются вторичными.

Какие функции выполняет трансформатор?

Трансформаторы широко используются в зарядных устройствах.

Главная функция трансформаторов состоит в понижении или повышении напряжения подаваемого на них тока. Эти устройства находят широкое применение в высоковольтных сетях, которые доставляют электричество от места его выработки до конечного потребителя.

В современном домашнем хозяйстве трудно обойтись без трансформатора тока. Данные устройства используются во всех типах техники, начиная от холодильника и заканчивая компьютером.

Еще недавно размеры и вес бытовой техники часто определялись именно параметрами трансформатора, ведь основное правило заключалось в том, что чем выше мощность преобразователя тока, тем он больше и тяжелее. Чтобы увидеть это, достаточно просто сравнить между собой два типа зарядных устройств. Трансформаторы от старого мобильного телефона и современного смартфона или планшета. В первом случае перед нами будет небольшое, но увесистое приспособление для зарядки, которое заметно греется и часто выходит из строя. Импульсные трансформаторы отличаются бесшумной работой, компактностью и высокой надежностью. Принцип их действия заключается в том, что переменное напряжение сначала поступает на выпрямитель и преобразовывается в высокочастотные импульсы, которые подаются на небольшой трансформатор.

В условиях проведения ремонта техники дома часто возникает потребность самостоятельной намотки катушки трансформатора. Для этого используют сборные сердечники, которые состоят из отдельных пластин. Детали соединяются между собой посредством замка, образовывая жесткую конструкцию. Обмотка проводом производится при помощи самодельного устройства, которое работает по принципу коловорота.

Создавая такой трансформатор, следует помнить: чем плотнее и аккуратнее намотана проволока, тем меньше проблем будет возникать с эксплуатацией такого устройства.

Витки отделяются друг от друга одинарным слоем бумаги, промазанной клеем, а первичная обмотка отделяется от вторичной промежутком из 4-5 слоев бумаги. Такая изоляция обеспечит защиту от пробоев и короткого замыкания. Правильно собранный трансформатор гарантирует стабильность работы техники, отсутствие назойливого гула и перегревов.

Заключение по теме

Трансформаторы используются в большинстве окружающей нас техники. Знание об их внутреннем строении дает возможность при необходимости произвести их ремонт, обслуживание или замену.

Отличить первичную обмотку от вторичной бывает важно для правильного подключения устройства в сеть. Подобная проблема может возникнуть и при использовании самодельных устройств или трансформаторов без маркировки.

Непрерывная катушечная обмотка применяется только при напряжении 110 кВ и выше. При использовании в обмотке нескольких параллельных проводов транспозиция делается, как в винтовых параллельных обмотках.

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты. Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром?

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока. Если приходится работать с постоянным, вначале его надо преобразовывать.

На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника. При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток.

Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Определение межвиткового замыкания

Другой частой поломкой трансформаторов является межвитковое замыкание. Проверить импульсный трансформатор на предмет подобной неисправности с одним лишь мультиметром практически нереально. Однако, если привлечь обоняние, внимательность и острое зрение, задача вполне может решиться.

Немного теории. Проволока на трансформаторе изолируется исключительно собственным лаковым покрытием. Если имеет место пробой изоляции, сопротивление межу соседними витками остается, в результате чего место контакта нагревается. Именно поэтому первым делом следует тщательно осмотреть прибор на предмет появления потеков, почернений, подгоревшей бумаги, вздутий и запаха гари.

Далее стараемся определить тип трансформатора. Как только это получается, по специализированным справочникам можно посмотреть сопротивление его обмоток. Далее переключаем тестер в режим мегаомметра и начинаем измерять сопротивление изоляции обмоток. В данном случае тестер импульсных трансформаторов – это обычный мультиметр.

Каждое измерение следует сравнить с указанным в справочнике. Если имеет место расхождение более чем на 50%, значит, обмотка неисправна.

Если же сопротивление обмоток по тем или иным причинам не указано, в справочнике обязательно должны быть приведены иные данные: тип и сечение провода, а также количество витков. С их помощью можно вычислить желаемый показатель самостоятельно.

Проверка бытовых понижающих устройств

Следует отметить момент проверки тестером-мультиметром классических трансформаторов понижения. Найти их можно практически во всех блоках питания, которые понижают входящее напряжение с 220 Вольт до выходящего в 5-30 Вольт.

Первым делом проверяется первичная обмотка, на которую подается напряжение в 220 Вольт. Признаки неисправности первичной обмотки:

  • малейшая видимость дыма;
  • запах гари;
  • треск.

В этом случае следует сразу прекращать эксперимент.

Если же все нормально, можно переходить к измерению на вторичных обмотках. Прикасаться к ним можно только контактами тестера (щупами). Если полученные результаты меньше контрольных минимум на 20%, значит обмотка неисправна.

К сожалению, протестировать такой токовый блок можно только в тех случаях, если имеется полностью аналогичный и гарантированно рабочий блок, так как именно с него и будут собираться контрольные данные. Также следует помнить, что при работе с показателями порядка 10 Ом некоторые тестеры могут искажать результаты.

Измерение тока холостого хода

Если все тестирования показали, что трансформатор полностью исправен, не лишним будет провести еще одну диагностику – на ток трансформатора холостого хода. Чаще всего он равняется 0,1-0,15 от номинального показателя, то есть тока под нагрузкой.

Для проведения проверки измерительный прибор переключают в режим амперметра. Важный момент! Мультиметр к испытуемому трансформатору следует подключать замкнутым накоротко.

Это важно, потому что во время подачи электроэнергии на обмотку трансформатора сила тока возрастает до нескольких сот раз в сравнении с номинальным. После этого щупы тестера размыкаются, и на экране отображаются показатели. Именно они и отображают величину тока без нагрузки, тока холостого хода. Аналогичным образом производится измерение показателей и на вторичных обмотках.

Для измерения напряжения к трансформатору чаще всего подключают реостат. Если же его под рукой нет, в ход может пойти спираль из вольфрама или ряд лампочек.

Для увеличения нагрузки увеличивают количество лампочек или же сокращают количество витков спирали.

Как можно видеть, для проверки даже не потребуется никакой особый тестер. Подойдет вполне обычный мультиметр. Крайне желательно иметь хотя бы приблизительное понятие о принципах работы и устройстве трансформаторов, но для успешного измерения достаточно всего лишь уметь переключать прибор в режим омметра.

Здравствуйте. Пробегусь сегодня по заезженной теме, поэтому статья пригодится тем, кто до сих пор не научился определять параметры неизвестного трансформатора. Давно уже хотел написать статью об этом, но не было более менее приличного трансформатора. Сегодня снял трансформатор с микроволновки времен СССР, определю какие напряжения на нем есть и покажу вам.
Ну начнем с того что общепринято прозванивать обмотки на сопротивление и где сопротивление больше та сетевая. Такой способ имеет право на жизнь, но не для всех трансформаторов. Анодно накальные тяжело определить где сетевая, так же тяжело определить если есть две симметричные обмотки по 110В или 127В. Как быть с трансформатором как мой герой статьи на фото, у которого 14 вводов

На время написания статьи я забуду откуда снял трансформатор, забуду куда что было включено. Возьму мультиметр в режиме омметра на пределе 200 Ом и начну мерять и сразу записывать какие обмотки связанны и какое на них сопротивление. Для удобства обмотки буду метить на бумаге.


В итоге у меня есть таблица сопротивлений(не учитывал сопротивление щупов мультиметра, поэтому показания не точны) и схема трансформатора. Как бы уже по схеме понятно что сетевая это обмотка между контактами 1-2, но как определить если бы были еще обмотки с большим сопротивление, скажем 20Ом или 30Ом.

Тут все просто, сетевая обмотка обычно мотается первой. Но стоит перестраховаться. Беру лампочку на 220В на 40Вт и последовательно включаем с обмотками, как описано в статье . Начинать надо с обмотки самым большим сопротивлением, и двигаться в сторону уменьшения сопротивления. Если лампа начинает конкретно подсвечивать, значит ток ХХ стал превышать нормы.

Выбираю предыдущую обмотку и подключаю теперь трансформатор через предохранитель. Оставляю на час, смотрю как греется. Если транс слегка теплый, значит обмотка выбрана правильно. На этой обмотке трансформатор должен выдавать номинальную расчетную мощность, в моем случае должен тянуть 180-200Вт

Ну и на последок осталось замерить напряжения на оставшихся обмотках. Обмотка 13-14 это отвод с другой стороны намотанный толстым проводом не менее 2,5 квадратов. Остальные обмотки намотаны проводом 0,51мм кв, что означает что каждая обмотка выдержит около 1А

Напряжения для моих задач не совсем стандартные, но возможно он куда нибудь да пригодится без перемотки
На этом пока все. Надеюсь было полезно и интересно. Если вам нравятся мои статьи, рекомендую подписаться на обновления Контакте или Одноклассниках что бы не пропустить что то новое
С ув. Эдуард

Слово “трансформатор” образуется от английского слова “transform” – преобразовывать, изменяться. Надеюсь все помнят фильм “Трансформеры”. Там автомобили легко преобразовывались в трансформеров и обратно. Но… трансформатор у нас не преобразовывается по внешнему виду. Он обладает еще более удивительным свойством – преобразовывает переменное напряжение одного значения в переменное напряжение другого значения! Это свойство трансформатора очень широко используется в радиоэлектронике и электротехнике.

Виды трансформаторов

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную . На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы , у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:


Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.


На схемах трехфазные трансформаторы обозначаются вот так:


Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Принцип работы трансформатора

Рассмотрим вот такую картинку:

1 – первичная обмотка трансформатора

2 – магнитопровод

3 – вторичная обмотка трансформатора

Ф – направление магнитного потока

U1 – напряжение на первичной обмотке

U2 – напряжение на вторичной обмотке

На картинке показан самый обычный однофазный трансформатор.

Магнитопровод состоит из пластинок специальной стали. По нему течет магнитный поток Ф (показано стрелками). Этот магнитный поток создается переменным напряжением первичной обмотки трансформатора. Снимается напряжение со вторичной обмотки трансформатора.

Но как такое возможно? У нас ведь нет никакой связи между первичной и вторичной обмотками? Как может ток течь через разомкнутую цепь? Все дело именно в магнитном потоке, который создает первичная обмотка трансформатора. Вторичная обмотка “ловит” этот магнитный поток и преобразовывает его в переменное напряжение с такой же частотой.

В настоящее время трансформаторы создают в другом конструктивном исполнении. Такое исполнение имеет свои плюсы, такие как удобство намотки первичной и вторичной обмоток, а также меньшие габариты.

Формула трансформатора

Так от чего же зависит напряжение, которое выдает нам трансформатор на вторичной обмотке? А зависит оно от витков, которые намотаны на первичной и вторичной обмотке!

где

N 1 – количество витков первичной обмотки

N 2 – количество витков вторичной обмотки

I 1 – сила тока первичной обмотки

I 2 – сила тока вторичной обмотки

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

Эта формула справедлива для идеального трансформатора . Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Виды трансформаторов по выходному напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку заходит 220 В, а на вторичной у нас получается 12 В. То есть мы большее напряжение преобразовали в меньшее напряжение.

Повышающий трансформатор

Это трансформатор, который повышает напряжение. Тут тоже все до боли просто. Допустим, на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение в несколько раз.

Согласующий трансформатор

Такой трансформатор используется для согласования между каскадами схем.

Разделительный или развязывающий трансформатор (трансформатор 220-220)

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про .

Как проверить трансформатор

Короткое замыкание обмоток

Хотя обмотки прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло , то трансформатор будет сильно греться или издавать сильный гул при работе. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Обрыв обмотки трансформатора

При обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки.

На фото ниже я проверяю целостность первичной обмотки, которая состоит из 2650 витков. Сопротивление есть? Значит все ОК. Обмотка не в обрыве. Если бы она была в обрыве, мультиметр показал бы на дисплее “1”.


Таким же способом проверяем и вторичную обмотку, которая состоит из 18 витков


Работа трансформатора

Работа понижающего трансформатора

Итак, у нас в гостях трансформатор от выжигательного прибора по дереву:


Его первичная обмотка – это цифры 1, 2.

Вторичная обмотка – цифры 3, 4.

N 1 – 2650 витков,

N 2 – 18 витков.

Его внутренности выглядят вот так:

Подключаем первичную обмотку трансформатора к 220 Вольтам


Ставим крутилку на мультиметре на измерения переменного тока и замеряем напряжение на первичной обмотке (напряжение сети).


Замеряем напряжение на вторичной обмотке.


Настало время проверить наши формулы

1.54/224=0.006875 (коэффициент отношения напряжения)

18/2650=0.006792 (коэффициент отношения обмоток)

Сравниваем числа… погрешность вообще копейки! Формула работает! Погрешность связана с потерями на нагрев обмоток трансформатора и магнитопровода, а также погрешность измерения мультиметра. Насчет силы тока работает простое правило: понижая напряжение, повышаем силу тока и наоборот, повышая напряжение, понижаем силу тока.

Трансформатор на холостом ходу

Работа трансформатора на холостом ходу подразумевает работу трансформатора без нагрузки на вторичной обмотке.

Нашим подопытным кроликом будет уже другой трансформатор


Вторичных обмоток здесь целых две пары, но мы будем использовать только одну.

Два красных провода – это первичная обмотка трансформатора. На эти провода мы будем подавать напряжение из сети 220 В.


Снимать напряжение будем со вторичной обмотки с двух синих проводов.


Для того, чтобы произвести замеры, нам потребуется выставить на крутилку на измерение переменного напряжения.Если вы не знаете, как измерять переменное напряжение и силу тока, рекомендую прочитать вот статью.


Замеряем напряжение на первичной обмотке трансформатора, куда мы подаем 220 В.


Мультиметр показывает 230 В. Ну что же, бывает).

Теперь замеряем напряжение на вторичной обмотке трансформатора


Получили 22 Вольта.

Интересно, а какую силу тока потребляет из розетки наш трансформатор при холостом режиме?


Мультиметр показал 60 миллиампер. Оно и понятно, ведь наш трансформатор не идеальный.

Как вы видите, на вторичной обмотке трансформатора нет никакой нагрузки, но он все равно “кушает” силу тока, а следовательно и электрическую энергию из сети. Если сосчитать мощность, то получим P=IU=230×0,06=13,8 Ватт. А если у нас он простоит включенным хотя бы часик, то у нас он съест электроэнергию 13,8 Ватт* час или 0,0138кВатт*час. А сколько сейчас стоит один киловатт электроэнергии? В России 4-5 рублей. Копейка рубль бережет. Поэтому, не рекомендуется оставлять в сети электроприборы, имеющие трансформаторный блок питания.

Трансформатор под нагрузкой

Опыт №1


Интересно, а поменяется ли сила тока на первичной обмотке, если мы нагрузим вторичную обмотку нашими лампочками? Лампочки загорелись, а сила тока на первичной обмотке тоже поменялась;-)


Когда мы замеряли без нагрузки, у нас было 60 миллиампер в цепи первичной обмотки. Цепь вторичной обмотки у нас была разомкнута, так как мы не присоединяли никакую нагрузку. Как только мы подсоединили лампы накаливания ко вторичной обмотке трансформатора, они стали сразу потреблять силу тока. Но еще кстати, сила тока поднялась в цепи первичной обмотки, до уровня 65,3 миллиампер. Отсюда напрашивается вывод:

Если растет сила тока в цепи вторичной обмотки трансформатора, то растет и сила тока в цепи первичной обмотки.

Опыт №2

Давайте проведем еще один опыт. Для этого замеряем напряжение без нагрузки на вторичной обмотке трансформатора, так называемый – холостой режим работы


а теперь подсоединяем наши лампочки и снова замеряем напряжение


Ого, напряжение просело на 0,2 В.

Давайте замеряем силу тока во вторичной обмотке с лампочками


Получили 105 миллиампер.

Все те же самые аналогичные операции проводим и для мощного номиналом в 10 Ом и мощностью рассеивания в 10 Ватт. Замеряем напряжение на вторичной обмотке, при включении резистора


Получили 18,9 В. Видели, как сильно просело напряжение? Если на холостом ходу было 22,2 В, то сейчас стало 18,9 В!

Интересно, какая сила тока течет во вторичной цепи, в которой включен резистор


Ого-го, почти 2 Ампера.

Вывод: при включении нагрузки происходит просадка напряжения. Напряжение падает тем больше, чем больше силы тока кушает нагрузка. Здесь также играет роль еще один немаловажный фактор – мощность трансформатора. Чем больше мощность трансформатора, тем меньше будет просадка напряжения. Мощность трансформатора зависит от его габаритов. Чем больше габариты, тем больше его размер сердечника. Следовательно, такой трансформатор может выдавать приличную силу тока во вторичной обмотке с минимальной просадкой напряжения.

Чтобы использовать имеющийся в запасах силовой трансформатор, необходимо как можно точнее узнать его ключевые характеристики. С решением этой задачи практически никогда не возникает затруднений, если на изделии сохранилась маркировка. Требуемые параметры легко можно найти в Сети, просто введя в строку поиска выбитые на трансформаторе буквы и цифры.
Однако довольно часто маркировки нет – надписи затираются, уничтожаются коррозией и так далее. На многих современных изделиях (особенно на дешевых) маркировка не предусмотрена вообще. Выбрасывать в таких случаях трансформатор, конечно же, не стоит. Ведь его цена на рынке может быть вполне приличной.

Наиболее важные параметры силовых трансформаторов

Что же нужно знать о трансформаторе, чтобы корректно и, самое главное, безопасно использовать его в своих целях? Чаще всего это ремонт какой-либо бытовой техники или изготовление собственных поделок, питающихся невысоким напряжением. А знать о лежащем перед нами трансформаторе нужно следующее:
  1. На какие выводы подавать сетевое питание (230 вольт)?
  2. С каких выводов снимать пониженное напряжение?
  3. Каким оно будет (12 вольт, 24 или другим)?
  4. Какую мощность сможет выдать трансформатор?
  5. Как не запутаться, если обмоток, а соответственно, и попарных выводов – несколько?
Все эти характеристики вполне реально вычислить даже тогда, когда нет абсолютно никакой информации о марке и модели силового трансформатора.
Для выполнения работы понадобятся простейшие инструменты и расходные материалы:
  • мультиметр с функциями омметра и вольтметра;
  • паяльник;
  • изолента или термоусадочная трубка;
  • сетевая вилка с проводом;
  • пара обычных проводов;
  • лампа накаливания;
  • штангенциркуль;
  • калькулятор.


Еще понадобится какой-либо инструмент для зачистки проводов и минимальный набор для пайки – припой и канифоль.

Определение первичной и вторичной обмоток

Первичная обмотка понижающего трансформатора предназначена для подачи сетевого питания. То есть именно к ней необходимо подключать 230 вольт, которые есть в обычной бытовой розетке. В самых простых вариантах первичная обмотка может иметь всего два вывода. Однако бывают и такие, в которых выводов, например, четыре. Это значит, что изделие рассчитано на работу и от 230 В, и от 110 В. Рассматривать будем вариант попроще.
Итак, как определить выводы первичной обмотки трансформатора? Для решения этой задачи понадобится мультиметр с функцией омметра. С его помощью нужно измерить сопротивление между всеми имеющимися выводами. Где оно будет больше всего, там и есть первичная обмотка. Найденные выводы желательно сразу же пометить, например, маркером.


Определить первичную обмотку можно и другим способом. Для этого намотанную проволоку внутри трансформатора должно быть хорошо видно. В современных вариантах чаще всего так и бывает. В старых изделиях внутренности могут оказаться залитыми краской, что исключает применение описываемого метода. Визуально выделяется та обмотка, диаметр проволоки которой меньше. Она является первичной. На нее и нужно подавать сетевое питание.
Осталось вычислить вторичную обмотку, с которой снимается пониженное напряжение. Многие уже догадались, как это сделать. Во-первых, сопротивление у вторичной обмотки будет намного меньше, чем у первичной. Во-вторых, диаметр проволоки, которой она намотана – будет больше.


Задача немного усложняется, если обмоток у трансформатора несколько. Особенно такой вариант пугает новичков. Однако методика их идентификации тоже очень проста, и аналогична вышеописанному. В первую очередь, нужно найти первичную обмотку. Ее сопротивление будет в разы больше, чем у оставшихся.
В завершение темы по обмоткам трансформатора стоит сказать несколько слов о том, почему сопротивление первичной обмотки больше, чем у вторичной, а с диаметром проволоки все с точностью до наоборот. Это поможет начинающим детальнее разобраться в вопросе, что очень важно при работе с высоким напряжением.
На первичную обмотку трансформатора подается сетевое напряжение 220 В. Это значит, что при мощности, например, 50 Вт через нее потечет ток силой около 0,2 А (мощность делим на напряжение). Соответственно, большое сечение проволоки здесь не нужно. Это, конечно же, очень упрощенное объяснение, но для начинающих (и решения поставленной выше задачи) этого будет достаточно.
Во вторичной обмотке токи протекают более значительные. Возьмем самый распространенный трансформатор, который выдает 12 В. При той же мощности в 50 Вт ток, протекающий через вторичную обмотку, составит порядка 4 А. Это уже довольно большое значение, потому проводник, через который будет проходить такой ток, должен быть потолще. Соответственно, чем больше сечение проволоки, тем сопротивление ее будет меньше.
Пользуясь этой теорией и простейшим омметром можно легко вычислять, где какая обмотка у понижающего трансформатора без маркировки.

Определение напряжения вторичной обмотки

Следующим этапом идентификации «безымянного» трансформатора будет определение напряжения на его вторичной обмотке. Это позволит установить, подходит ли изделие для наших целей. Например, вы собираете блок питания на 24 В, а трансформатор выдает только 12 В. Соответственно, придется искать другой вариант.


Для определения напряжения, которое возможно снять со вторичной обмотки, на трансформатор придется подавать сетевое питание. Это уже довольно опасная операция. По неосторожности или незнанию можно получить сильный удар током, обжечься, повредить проводку в доме или сжечь сам трансформатор. Потому не лишним будет запастись несколькими рекомендациями относительно техники безопасности.
Во-первых, при тестировании подсоединять трансформатор к сети следует через лампу накаливания. Она подключается последовательно, в разрыв одного из проводов, идущих к вилке. Лампочка будет служить в роли предохранителя на случай, если вы что-то сделаете неправильно, или же исследуемый трансформатор неисправен (закорочен, сгоревший, намокший и так далее). Если она светится, значит что-то пошло не так. На лицо короткое замыкание в трансформаторе, потому вилку из розетки лучше сразу же вытянуть. Если лампа не светится, ничего не воняет и не дымит – работу можно продолжать.
Во-вторых, все соединения между выходами и вилкой должны быть тщательно заизолированы. Не стоит пренебрегать этой рекомендацией. Вы даже не заметите, как рассматривая показания мультиметра, например, возьметесь поправлять скручивающиеся провода, получите хорошенький удар током. Это опасно не только для здоровья, но и для жизни. Для изолирования используйте изоленту или термоусадочную трубку соответствующего диаметра.
Теперь сам процесс. К выводам первичной обмотки припаивается обычная вилка с проводами. Как указано выше, в цепь добавляется лампа накаливания. Все соединения изолируются. К выводам вторичной обмотки подсоединяется мультиметр в режиме вольтметра. Обратите внимание на то, чтобы он был включен на измерение переменного напряжения. Начинающие часто допускают тут ошибку. Установив ручку мультиметра на измерение постоянного напряжения, вы ничего не сожжете, однако, на дисплее не получите никаких вменяемых и полезных показаний.


Теперь можно вставлять вилку в розетку. Если все в рабочем состоянии, то прибор покажет вам выдаваемое трансформатором пониженное напряжение. Аналогично можно измерить напряжение на других обмотках, если их несколько.

Простые способы вычисления мощности силового трансформатора

С мощностью понижающего трансформатора дела обстоят немного сложнее, но некоторые простые методики, все же, есть. Самый доступный способ определить эту характеристику – измерение диаметра проволоки во вторичной обмотке. Для этого понадобится штангенциркуль, калькулятор и нижеприведенная информация.
Сначала измеряется диаметр проволоки. Для примера возьмем значение в 1,5 мм. Теперь нужно вычислить сечение проволоки. Для этого необходимо половину диаметра (радиус) возвести в квадрат и умножить на число «пи». Для нашего примера сечение будет около 1,76 квадратных миллиметров.
Далее для расчета понадобится общепринятое значение плотности тока на квадратный миллиметр проводника. Для бытовых понижающих трансформаторов это 2,5 ампера на миллиметр квадратный. Соответственно, по второй обмотке нашего образца сможет «безболезненно» протекать ток силой около 4,3 А.
Теперь берем вычисленное ранее напряжение вторичной обмотки, и умножаем его на полученный ток. В результате получим примерное значение мощности нашего трансформатора. При 12 В и 4,3 А этот параметр будет в районе 50 Вт.
Мощность «безымянного» трансформатора можно определить еще несколькими способами, однако, они более сложные. Желающие смогут найти информацию о них в Сети. Мощность узнается по сечению окон трансформатора, с помощью программ расчета, а также по номинальной рабочей температуре.

Заключение

Из всего вышесказанного можно сделать вывод, что определение характеристик трансформатора без маркировки является довольно простой задачей. Главное – соблюдать правила безопасности и быть предельно внимательным при работе с высоким напряжением.